Operator Usage Examples
This document provides practical usage examples for various types of operators, helping you quickly get started with operator development and usage.
Agent Operator Examples
Example 1: Medical Aesthetics Marketing Agent
A real-world agent operator configuration for generating Xiaohongshu marketing copy for medical aesthetics products.
Agent Configuration
{
"type": "agent",
"config": {
"id": "09dae2fc-6391-4aa9-8936-3636c836deaa",
"name": "Medical Beauty Marketing Pro",
"type": "agent",
"description": "Intelligent marketing expert specializing in the medical aesthetics industry, skilled at writing product promotional posts suited for the Xiaohongshu platform, providing precision marketing strategies and user pain point solutions",
"promptTemplate": "Please write a Xiaohongshu promotional post for [{{product}}], key selling points: {{features}}, target audience: {{target}}, usage scenario: {{scenario}}. Highlight {{key_benefit}} and address the {{pain_point}} issue",
"systemPrompt": "You are an expert in medical aesthetics marketing on Xiaohongshu, following these guidelines:\n1. Content complies with Xiaohongshu community standards, using language styles preferred by young women\n2. Use scenario-based descriptions with emoji symbols\n3. Include relevant hashtags (#MedicalAestheticsTrends #SkincareBlackTech)\n4. Highlight product ingredients/technology advantages related to user pain points\n5. Avoid prohibited advertising terms, using an experience-sharing format\n6. Provide customized recommendations based on user segments (age/skin type/spending capacity)",
"inputPorts": [
{
"name": "memory",
"type": "boolean",
"label": "Enable Conversation History Memory",
"required": false
},
{
"name": "target",
"type": "string",
"label": "Target Audience",
"required": false
},
{
"name": "context",
"type": "boolean",
"label": "Enable Knowledge Base Content",
"required": false
},
{
"name": "product",
"type": "string",
"label": "Product Name",
"required": false
},
{
"name": "features",
"type": "string",
"label": "Product Features",
"required": false
},
{
"name": "internet",
"type": "boolean",
"label": "Enable Internet Search",
"required": false
},
{
"name": "scenario",
"type": "string",
"label": "Usage Scenario",
"required": false
},
{
"name": "pain_point",
"type": "string",
"label": "User Pain Point",
"required": false
},
{
"name": "key_benefit",
"type": "string",
"label": "Key Benefit",
"required": false
}
],
"outputPorts": [
{
"name": "answer",
"type": "string",
"label": "Generated Content"
}
],
"inputSchema": {
"type": "object",
"properties": {
"memory": {
"type": "boolean",
"default": false,
"description": "Enable conversation history memory"
},
"target": {
"type": "string",
"description": "Target audience"
},
"context": {
"type": "boolean",
"default": false,
"description": "Enable knowledge base content"
},
"product": {
"type": "string",
"description": "Product name"
},
"features": {
"type": "string",
"description": "Product features"
},
"internet": {
"type": "boolean",
"default": false,
"description": "Enable internet search"
},
"scenario": {
"type": "string",
"description": "Usage scenario"
},
"pain_point": {
"type": "string",
"description": "User pain point"
},
"key_benefit": {
"type": "string",
"description": "Key benefit"
}
}
},
"outputSchema": {
"type": "object",
"properties": {
"answer": {
"type": "string",
"label": "Generated Content"
}
}
},
"model": {
"id": "3638ac90-902e-424c-84fd-a100d9e97b43",
"identifier": "deepseek-v3",
"name": "DeepSeek-V3",
"apiType": "openai",
"modelType": "text",
"systemConfiguration": {
"model": "deepseek-v3",
"apiKey": "sk-xxx",
"apiUrl": "https://dashscope.aliyuncs.com/compatible-mode/v1",
"provider": "alibaba"
}
}
},
"position": {
"x": -135,
"y": 105
},
"defaultInputs": {},
"metadata": {
"origin": "built-in"
}
}
Usage Example
Input Data:
{
"product": "Hyaluronic Acid Face Mask",
"features": "Deep hydration, skin firming, anti-aging",
"target": "Working women aged 25-35",
"scenario": "Skin recovery after late-night work",
"pain_point": "Dry, dehydrated skin with visible fine lines",
"key_benefit": "24-hour continuous hydration"
}
Output Result:
{
"answer": "🌟 Night owl savior alert! This Hyaluronic Acid Face Mask is absolutely incredible ✨\n\nAs someone who frequently pulls late nights at work, my biggest fear is looking at a dull, dry face in the mirror the next morning 😭 This hyaluronic acid mask is literally my lifeline!\n\n💧 24-hour continuous hydration is no joke:\n✅ Deep Hydration: Hyaluronic acid molecules penetrate straight to the skin's base layer\n✅ Skin Firming: Post-late-night sagging sensation improved instantly\n✅ Anti-Aging: Fine lines are visibly fading\n\nThe next day my skin is so dewy it glows, and my colleagues keep asking if I changed my skincare routine 🤩\n\n#MedicalAestheticsTrends #SkincareBlackTech #NightOwlEssentials #HyaluronicAcidMask\n\nGirls, this one is definitely worth stocking up on!"
}
Worker Operator Examples
Example 1: Email Sender (Built-in System)
A real-world Worker operator configuration.
{
"type": "operator",
"config": {
"id": "7eb51af1-1f84-416c-8295-3a03b20391de",
"name": "Email Sender",
"type": "operator",
"method": "default",
"identifier": "email",
"inputPorts": [
{
"name": "to",
"type": "string",
"label": "Recipient",
"required": true
},
{
"name": "content",
"type": "string",
"label": "Email Content",
"required": true
},
{
"name": "subject",
"type": "string",
"label": "Email Subject",
"required": true
},
{
"name": "attachments",
"type": "array",
"label": "Attachments",
"required": false
}
],
"outputPorts": [
{
"name": "success",
"type": "boolean",
"label": "Send Status"
},
{
"name": "messageId",
"type": "string",
"label": "Message ID"
}
]
},
"position": {
"x": 330,
"y": 105
},
"defaultInputs": {
"to": "joshua@magecommerce.com",
"subject": "Test Email"
},
"metadata": {
"origin": "built-in",
"runtime": {
"type": "worker",
"config": {}
}
}
}
Example 2: Document Processing Operator
Extract content from PDF documents.
{
"name": "PDF Document Processor",
"identifier": "pdf-processor",
"description": "Extract and process PDF document content",
"executionType": "worker",
"methods": [
{
"name": "Extract Text Content",
"identifier": "extract-text",
"inputSchema": {
"type": "object",
"required": ["fileUrl"],
"properties": {
"fileUrl": {
"type": "string",
"title": "PDF File URL",
"format": "uri",
"isPort": true
},
"pageRange": {
"type": "object",
"title": "Page Range",
"properties": {
"start": {"type": "number", "title": "Start Page", "minimum": 1},
"end": {"type": "number", "title": "End Page", "minimum": 1}
}
},
"extractImages": {
"type": "boolean",
"title": "Extract Images",
"default": false
}
}
},
"outputSchema": {
"type": "object",
"properties": {
"text": {
"type": "string",
"title": "Extracted Text Content"
},
"images": {
"type": "array",
"title": "Extracted Images",
"items": {
"type": "object",
"properties": {
"url": {"type": "string", "title": "Image URL"},
"page": {"type": "number", "title": "Page Number"}
}
}
},
"metadata": {
"type": "object",
"title": "Document Metadata",
"properties": {
"pageCount": {"type": "number", "title": "Total Pages"},
"title": {"type": "string", "title": "Document Title"},
"author": {"type": "string", "title": "Author"}
}
}
}
}
}
]
}
API Operator Examples
Example 1: Custom Email Sending API
A real-world API operator configuration.
{
"type": "operator",
"config": {
"id": "4e269cee-3a80-4049-a9c3-177b9fd6f9b5",
"name": "Email Sender Plus",
"type": "operator",
"method": "default",
"identifier": "email-operator",
"inputPorts": [
{
"name": "cc",
"type": "array",
"label": "CC",
"required": false
},
{
"name": "to",
"type": "string",
"label": "Recipient",
"required": true
},
{
"name": "bcc",
"type": "array",
"label": "BCC",
"required": false
},
{
"name": "html",
"type": "string",
"label": "HTML Content",
"required": false
},
{
"name": "text",
"type": "string",
"label": "Text Content",
"required": false
},
{
"name": "subject",
"type": "string",
"label": "Email Subject",
"required": true
},
{
"name": "attachment_files",
"type": "array",
"label": "Attachment Files",
"required": false
}
],
"outputPorts": [
{
"name": "data",
"type": "object",
"label": "Response Data"
},
{
"name": "success",
"type": "boolean",
"label": "Send Status"
}
]
},
"position": {
"x": -90,
"y": -45
},
"defaultInputs": {
"to": "joshua@magecommerce.com",
"text": "Test email content",
"subject": "Test Email"
},
"metadata": {
"runtime": {
"type": "rest-api",
"config": {
"headers": [],
"timeout": 30000,
"serverUrl": "https://api.genispace.cn",
"retryPolicy": {
"intervalMs": 1000,
"maxAttempts": 3
},
"method": "POST",
"caching": {
"enabled": false,
"ttlSeconds": 3600
},
"endpoint": "https://api.genispace.cn/njs-operators/message/email_operator",
"url": "https://api.genispace.cn/njs-operators/message/email_operator"
}
},
"origin": "custom"
}
}
Example 2: User Management API
Create a user management operator providing CRUD operations for users.
Operator Configuration
{
"name": "User Management API",
"identifier": "user-management-api",
"description": "Provides CRUD operations for user information",
"category": "api",
"executionType": "api",
"configuration": {
"schema": {
"type": "api",
"properties": {
"serverUrl": {
"type": "string",
"title": "Server URL",
"required": true,
"description": "User API server address"
},
"apiKey": {
"type": "string",
"title": "API Key",
"format": "password",
"required": true,
"description": "API access key"
}
}
},
"values": {
"serverUrl": "https://api.example.com",
"apiKey": ""
}
}
}
Get User Info Method
{
"name": "Get User Info",
"identifier": "get-user",
"description": "Get detailed user information by user ID",
"inputSchema": {
"type": "object",
"required": ["userId"],
"properties": {
"userId": {
"type": "string",
"title": "User ID",
"description": "The user ID to query",
"isPort": true
},
"includeProfile": {
"type": "boolean",
"title": "Include Details",
"description": "Whether to include detailed user profile",
"default": false
}
}
},
"outputSchema": {
"type": "object",
"properties": {
"user": {
"type": "object",
"title": "User Information",
"properties": {
"id": {"type": "string", "title": "User ID"},
"name": {"type": "string", "title": "Username"},
"email": {"type": "string", "title": "Email"},
"createdAt": {"type": "string", "title": "Created At"}
}
},
"success": {
"type": "boolean",
"title": "Execution Status"
}
}
},
"configuration": {
"schema": {
"type": "object",
"properties": {
"method": {
"type": "string",
"title": "Request Method",
"enum": ["GET"],
"default": "GET"
},
"endpoint": {
"type": "string",
"title": "Endpoint Path",
"required": true
}
}
},
"values": {
"method": "GET",
"endpoint": "/api/users/{userId}"
}
}
}
MCP Operator Examples
Example 1: Intelligent Text Analyzer
Perform text analysis using AI models.
{
"name": "Intelligent Text Analyzer",
"identifier": "ai-text-analyzer",
"description": "Perform text analysis and processing using AI models",
"executionType": "mcp",
"systemConfiguration": {
"schema": {
"type": "mcp",
"properties": {
"serverUrl": {
"type": "string",
"title": "MCP Server URL",
"required": true
},
"model": {
"type": "string",
"title": "AI Model",
"enum": ["gpt-4", "gpt-3.5-turbo", "claude-3"],
"default": "gpt-4"
},
"apiKey": {
"type": "string",
"title": "API Key",
"format": "password",
"required": true
}
}
}
},
"methods": [
{
"name": "Sentiment Analysis",
"identifier": "sentiment-analysis",
"inputSchema": {
"type": "object",
"required": ["text"],
"properties": {
"text": {
"type": "string",
"title": "Text to Analyze",
"maxLength": 5000,
"isPort": true
},
"language": {
"type": "string",
"title": "Text Language",
"enum": ["zh", "en", "auto"],
"default": "auto"
}
}
},
"outputSchema": {
"type": "object",
"properties": {
"sentiment": {
"type": "string",
"title": "Sentiment",
"enum": ["positive", "negative", "neutral"]
},
"confidence": {
"type": "number",
"title": "Confidence",
"minimum": 0,
"maximum": 1
},
"keywords": {
"type": "array",
"title": "Keywords",
"items": {"type": "string"}
}
}
}
}
]
}
Container Operator Examples
Example 1: Python Data Processor
Perform complex data processing using a Python container.
{
"name": "Python Data Processor",
"identifier": "python-data-processor",
"description": "Perform complex data analysis and processing using Python",
"executionType": "container",
"systemConfiguration": {
"schema": {
"type": "container",
"properties": {
"image": {
"type": "string",
"title": "Docker Image",
"default": "python:3.9-slim"
},
"command": {
"type": "string",
"title": "Execution Command",
"default": "python /app/processor.py"
},
"environment": {
"type": "object",
"title": "Environment Variables",
"properties": {
"PYTHONPATH": {
"type": "string",
"default": "/app"
}
}
},
"resources": {
"type": "object",
"title": "Resource Limits",
"properties": {
"memory": {"type": "string", "default": "1Gi"},
"cpu": {"type": "string", "default": "1"}
}
}
}
}
},
"methods": [
{
"name": "Statistical Analysis",
"identifier": "statistical-analysis",
"inputSchema": {
"type": "object",
"required": ["dataset"],
"properties": {
"dataset": {
"type": "array",
"title": "Dataset",
"description": "Dataset to analyze",
"isPort": true
},
"analysisType": {
"type": "string",
"title": "Analysis Type",
"enum": ["descriptive", "correlation", "regression"],
"default": "descriptive"
},
"outputFormat": {
"type": "string",
"title": "Output Format",
"enum": ["json", "csv", "html"],
"default": "json"
}
}
},
"outputSchema": {
"type": "object",
"properties": {
"statistics": {
"type": "object",
"title": "Statistics Results",
"properties": {
"mean": {"type": "number", "title": "Mean"},
"median": {"type": "number", "title": "Median"},
"std": {"type": "number", "title": "Standard Deviation"}
}
},
"charts": {
"type": "array",
"title": "Chart Data",
"items": {
"type": "object",
"properties": {
"type": {"type": "string", "title": "Chart Type"},
"data": {"type": "object", "title": "Chart Data"}
}
}
}
}
}
}
]
}
Workflow Integration Examples
Example: Medical Aesthetics Marketing Content Generation Workflow
A real-world workflow demonstrating the combined use of Agent and Worker operators.
{
"workflow": {
"name": "Medical Aesthetics Product Xiaohongshu Content Publishing",
"description": "Automated workflow for medical aesthetics product content publishing on Xiaohongshu, including content generation, compliance checking, scheduled publishing, and data feedback",
"edges": [
{
"source": "agent-1747982793576:answer",
"target": "operator-1747982806154:content"
}
],
"nodes": {
"agent-1747982793576": {
"type": "agent",
"config": {
"name": "Medical Beauty Marketing Pro",
"description": "Intelligent marketing expert specializing in the medical aesthetics industry"
},
"position": {"x": -135, "y": 105},
"defaultInputs": {},
"metadata": {"origin": "built-in"}
},
"operator-1747982806154": {
"type": "operator",
"config": {
"name": "Email Sender",
"identifier": "email"
},
"position": {"x": 330, "y": 105},
"defaultInputs": {
"to": "joshua@magecommerce.com",
"subject": "New Content Generated Notification"
},
"metadata": {
"origin": "built-in",
"runtime": {"type": "worker", "config": {}}
}
}
}
}
}
Workflow Execution Process:
- Agent Generates Content: Generates Xiaohongshu copy based on product information
- Email Notification: Sends the generated content via email to relevant personnel
Connection Description:
- The agent's
answeroutput connects to the email sender'scontentinput - This implements an automated flow from content generation to notification delivery
Example: User Registration Workflow
Demonstrates how to combine multiple operators in a workflow.
{
"workflow": {
"name": "User Registration Flow",
"description": "Complete user registration and welcome workflow",
"nodes": [
{
"id": "input",
"type": "input",
"data": {
"schema": {
"type": "object",
"properties": {
"email": {"type": "string", "format": "email"},
"name": {"type": "string"},
"password": {"type": "string"}
}
}
}
},
{
"id": "validate-user",
"type": "operator",
"operatorId": "user-management-api",
"methodId": "validate-email",
"configuration": {
"serverUrl": "https://api.example.com"
}
},
{
"id": "create-user",
"type": "operator",
"operatorId": "user-management-api",
"methodId": "create-user",
"configuration": {
"serverUrl": "https://api.example.com"
}
},
{
"id": "send-welcome-email",
"type": "operator",
"operatorId": "email",
"methodId": "default",
"configuration": {
"smtpServer": "smtp.example.com"
}
},
{
"id": "output",
"type": "output"
}
],
"connections": [
{
"source": "input",
"sourcePort": "email",
"target": "validate-user",
"targetPort": "email"
},
{
"source": "validate-user",
"sourcePort": "isValid",
"target": "create-user",
"targetPort": "proceed"
},
{
"source": "input",
"sourcePort": "name",
"target": "create-user",
"targetPort": "name"
},
{
"source": "create-user",
"sourcePort": "userId",
"target": "send-welcome-email",
"targetPort": "userId"
},
{
"source": "send-welcome-email",
"sourcePort": "success",
"target": "output",
"targetPort": "result"
}
]
}
}
Testing Examples
Unit Tests
{
"testSuite": {
"name": "Agent Operator Tests",
"tests": [
{
"name": "Medical Aesthetics Copy Generation Test",
"operatorId": "medical-beauty-agent",
"methodId": "generate-content",
"input": {
"product": "Hyaluronic Acid Face Mask",
"features": "Deep hydration, skin firming",
"target": "Working women aged 25-35",
"scenario": "Skin recovery after late-night work"
},
"expectedOutput": {
"answer": "Xiaohongshu copy containing product features and target audience"
}
},
{
"name": "Email Sending Test",
"operatorId": "email",
"methodId": "default",
"input": {
"to": "test@example.com",
"subject": "Test Email",
"content": "This is a test email"
},
"expectedOutput": {
"success": true,
"messageId": "msg-12345"
}
}
]
}
}
Performance Tests
{
"performanceTest": {
"name": "Agent Performance Test",
"operatorId": "medical-beauty-agent",
"methodId": "generate-content",
"scenarios": [
{
"name": "Single Content Generation",
"concurrency": 1,
"duration": "30s",
"input": {
"product": "Hyaluronic Acid Face Mask",
"features": "Deep hydration"
},
"expectations": {
"averageResponseTime": "< 3s",
"errorRate": "< 1%"
}
},
{
"name": "Concurrent Content Generation",
"concurrency": 10,
"duration": "60s",
"input": {
"product": "Hyaluronic Acid Face Mask",
"features": "Deep hydration"
},
"expectations": {
"averageResponseTime": "< 5s",
"errorRate": "< 5%",
"throughput": "> 2 req/s"
}
}
]
}
}
Best Practices Summary
1. Design Principles
- Single Responsibility: Each operator should focus on a specific function
- Interface Stability: Maintain backward-compatible interface design
- Error Friendliness: Provide clear error messages and handling
2. Configuration Management
- Layered Configuration: Differentiate between operator-level and method-level configuration
- Sensitive Information: Use system configuration to store sensitive data
- Default Values: Provide reasonable defaults for all optional parameters
3. Performance Optimization
- Caching Strategy: Enable caching for appropriate operations
- Resource Limits: Set reasonable resource usage limits
- Timeout Handling: Configure appropriate timeout and retry mechanisms
4. Security Considerations
- Input Validation: Strictly validate all input parameters
- Access Control: Implement appropriate access controls
- Audit Logging: Record audit information for important operations
Related Documentation
- Operator Overview - Learn about basic operator concepts
- Operator Configuration Specification - Detailed configuration documentation
- OpenAPI Support - Learn how to import operators from OpenAPI documents
- Creating Custom Operators - Operator development guide
- Operator Best Practices - Development best practices